Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract Machine learning (ML) models are used for in-situ monitoring in additive manufacturing (AM) for defect detection. However, sensitive information stored in ML models, such as part designs, is at risk of data leakage due to unauthorized access. To address this, differential privacy (DP) introduces noise into ML, outperforming cryptography, which is slow, and data anonymization, which does not guarantee privacy. While DP enhances privacy, it reduces the precision of defect detection. This paper proposes combining DP with Hyperdimensional Computing (HDC), a brain-inspired model that memorizes training sample information in a large hyperspace, to optimize real-time monitoring in AM while protecting privacy. Adding DP noise to the HDC model protects sensitive information without compromising defect detection accuracy. Our studies demonstrate the effectiveness of this approach in monitoring anomalies, such as overhangs, using high-speed melt pool data analysis. With a privacy budget set at 1, our model achieved an F-score of 94.30%, surpassing traditional models like ResNet50, DenseNet201, EfficientNet B2, and AlexNet, which have performance up to 66%. Thus, the intersection of DP and HDC promises accurate defect detection and protection of sensitive information in AM. The proposed method can also be extended to other AM processes, such as fused filament fabrication.more » « lessFree, publicly-accessible full text available November 17, 2025
-
The 6G network, the next‐generation communication system, is envisaged to provide unprecedented experience through hyperconnectivity involving everything. The communication should hold artificial intelligence‐centric network infrastructures as interconnecting a swarm of machines. However, existing network systems use orthogonal modulation and costly error correction code; they are very sensitive to noise and rely on many processing layers. These schemes impose significant overhead on low‐power internet of things devices connected to noisy networks. Herein, a hyperdimensional network‐based system, called , is proposed, which enables robust and efficient data communication/learning. exploits a redundant and holographic representation of hyperdimensional computing (HDC) to design highly robust data modulation, enabling two functionalities on transmitted data: 1) an iterative decoding method that translates the vector back to the original data without error correction mechanisms, or 2) a native hyperdimensional learning technique on transmitted data with no need for costly data decoding. A hardware accelerator that supports both data decoding and hyperdimensional learning using a unified accelerator is also developed. The evaluation shows that provides a bit error rate comparable to that of state‐of‐the‐art modulation schemes while achieving 9.4 faster and 27.8 higher energy efficiency compared to state‐of‐the‐art deep learning systems.more » « less
An official website of the United States government
